
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
91

07
--

FR
+E

N
G

RESEARCH
REPORT
N° 9107
Oct 2017

Project-Team Maverick

A Generic Data Exchange
System for
Friend-to-Friend
Networks
Cyril Soler

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

A Generic Data Exchange System for
Friend-to-Friend Networks

Cyril Soler

Project-Team Maverick

Research Report n° 9107 — Oct 2017 — 22 pages

Abstract: Decentralized private networks (a.k.a. darknets) guaranty privacy and concealment of infor-
mation against global observers. Although a significant number of decentralized data distribution systems
ex- ist, most of them target peer-to-peer architectures where any pair of nodes can exchange data using a
temporary encrypted connec- tion. Little has been done to achieve the same confidentiality in static darknet
architectures, also known as “Friend-to-Friend” net- works, in which participants form a static mesh of
nodes, each node only talking to a set of “friend” nodes managed by the user himself. Distributing data
over F2F networks requires a specific model of confidentiality and proper algorithms in order to seamlessly
spread the information beyond immediate friends nodes. In this paper we present a secure, robust and
generic data distribution system that is specifically suitable to F2F networks. The proposed system man-
ages pseudo-anonymous identities grouped into circles, that can be used to limit the access to information.
It offers built-in reputa- tion control and an abstract data layer to represent the information to spread. On
top of that we present several existing applications to that system, providing the functionality of distributed
forums, asynchroneous messaging, distribution channels, and also discuss the possibility to create social
networking applications on top of it.

Key-words: Decentralized Online Social Networks, Friend-to-Friend Networks, Darknets

Un Système de Distribution Robuste et Sécurisée sur les Réseaux F2F
Résumé : Les réseaux privés décentralisés (ou Darknets) garrantissent la securite des informations contre l’espionnage
de masse. Bien qu’une quantité significative de réseaux privés décentralisés existe dans le monde de l’open source, ceux ci
sont généralement basés sur une architecture "pair à pair" (P2P) dans laquelle des communications directes sont succeptibles
d’intervenir entre toutes les paires de noeud du réseau. Nous nous interessons plus particulièrement à la distribution sécurisée de
données dans les réseaux de type "ami à ami" (F2F), pour lesquels chaque noeud du réseau ne communique directement qu’avec
une liste pré-déterminée de noeuds amis controllée par l’utilisateur. La distribution sécurisée de données sur ce type de réseau
demande des algorithmes et un modèle de confidentialité adaptés adaptés Dans ce rapport, nous proposons un système robuste,
sécurisé et extensible de distribution de données sur les réseaux F2F, proposant des identités pseudo-anonymes controllées
par un système de réputations, et pouvant être regroupées en cercles d’amis pouvant être utilisés pour limiter la distribution
des informations. Nous présentons plusieurs applications basées sur ce système, implémentant des forums, des chaines de
distribution ainsi qu’une messagerie asynchrone.

Mots-clés : Réseaux Sociaux Décentralisés, Réseaux F2F, Darknets

Generic Data Exchange for F2F Networks 3

1 Introduction
Decentralized online social networks have recently come been
under focus, especially after the scandals of global surveil-
lance highlighted by the Snowden leaks. Many decentralized
OSNs are available today, most of which are based on a P2P ar-
chitecture [PFS14] where nodes can freely exchange data with
any other nodes. In this paper, we focus on secure and pri-
vate data distribution over a specific subclass of online social
networks, called "Friend-to-friend" networks (or darknets), in
which each network node only exchanges data with a desig-
nated list of "friend" nodes—generally managed by the user
who owns the node.

Friend-to-friend networks (further noted F2F) come with
interesting intrinsic properties: 2-hops anonymization: in-
formation beyond friend nodes can easily be guarantied to be
anonymous. Since data always come from your friend nodes,
only these nodes can see your own IP address (if that address is
made visible by the friend-to-friend link); local web of trust:
friend nodes can team up to provide data integrity and control;
local distributed caching: friend nodes can be used to cache
some shared information while the node is offline; consistent
local interest: friend nodes that are selected on the basis of
existing real-life relationships can be trusted to provide rele-
vant/interesting content.

However, F2F network architectures also raise specific chal-
lenges for a secure distribution of data: no global address-
ing: in F2F networks, each node only has a local knowledge
of network topology, and cannot talk directly to a non friend
node. Distributed information therefore needs to consistently
spread from friend to friend. This poses serious difficulties
when it comes to ensuring data availability [GTAL12]; global
consistency: data distribution needs to be fast enough and
flexible. In a system that provides grouping of users for in-
stance, adding and removing group members should rapidly
take effect over the whole reachable network; network het-
erogeneity: the bandwidth load should be as light as possi-
ble because the number of friend connections is usually quite
limited (the order of magnitude is tens), although it can lo-
cally be very large too (several hundreds); robustness: data
distribution needs to be robust to random disconnection of
friend nodes. Some amount of redundancy is therefore needed,
but shouldn’t result into wasting network bandwidth; security
against non friend nodes: data distribution needs to be safe
against rogue network nodes that may attempt to propagate
of unwanted/corrupted data, or implicate target users in un-
wanted activities, or simply attempt to flood the system. Data
should also be protected against errors in transmission; pri-

vacy against non friend nodes: the distribution of data should
not disclose any information about the topology of the network
beyond friend nodes. Users should be given the possibility to
remain anonymous while providing authentication and control
over their own data.

Our contribution is a Generic data eXchange System
(hereby named GXS) for friend-to-friend networks that lever-
ages the properties of F2F networks while ensuring a high de-
gree of privacy and security. In this system, friend nodes help
each other to maintain data consistency and ensure distribu-
tion, while relying on cryptography for privacy and authenti-
cation. The GXS system only requires the underlying mesh
of network nodes to provide pairwise authenticated/encrypted
links between friend nodes, and a cryptographic signing prim-
itive to optionally connect some of its own data to the owner
node. On top of the F2F mesh, GXS ensures the distribution
of data, while privileging by design the information that most
interests users around each node and ensuring a high degree
of redundancy so that all communications can be kept asyn-
chronous. GXS provides transport for a generic definition of
data that can be adapted to represent very different types of
content, thereby offering a high degree of extensibility.

The notion of security is central to the GXS system so as
to ensure both integrity, authentication/anonymity (depending
on the requirements of the service it is used in) and privacy
of the data. While the hosting darknet architecture protects
against global observers, GXS authentication and encryption
system prevents participants in the network to access data that
is not meant for them. In addition each network node lo-
cally encrypts its data making it theoretically unreachable to
physical access when a node is not running. The GXS sys-
tem guaranties both anonymity and authentication of data us-
ing pseudo-anonymous identities that are optionally linked to
the hosting network node. These identities can be grouped
into circles, which in turn can be set to limit the distribution
of other data. Generally speaking, GXS ensures security by
design rather than software control. This means that users are
denied access to private data not because friend nodes refuse
to send it, but because encryption makes it unreadable.

We present in this paper several services based on GXS that
already run on top of an existing F2F network: distributed fo-
rums where users can exchange ideas in a threaded hierarchy
of topics; information channels where a restricted set of users
can post authenticated data accessible to wider set of users who
can react/respond using threaded comments; an asynchronous
messaging service that allows pseudo-anonymous identities to
robustly exchange emails. These services are currently used by
thousands of users everyday in an existing F2F network used

RR n° 9107

Generic Data Exchange for F2F Networks 4

as a test bed, but we believe that GXS is modular enough to
be fit into any existing darknet architecture. We also discuss in
this paper the possible implementation of fully decentralized
versions of existing social network services similar to Face-
book, Twitter and GitHub on top of F2F networks using GXS.

2 Related Work
Cryptographic primitives for decentalized data distribu-
tion. Attribute-Based Encryption allows to encrypt data for
groups following a given access structure that allows an ac-
curate definition of who can access which data [BSW07].
ABE operations are 100-1000 times slower than those of RSA,
which we think is absolutely prohibitive. ABE secures infor-
mation to groups of users by defining and distributing a sym-
metric key for each group. Every information is encrypted
using this symmetric key. This key needs to be updated at
every changes in a group, which makes the synchronizing of
group membership challenging over a large network. Some
social network systems however have been designed based on
ABE systems: Persona [BBS+09, JNM+12] uses ciphertext
policy attribute based encryption and creates lists of users with
access rights. Further instances of this system such as DE-
CENT [JNM+12] and–an update–Cachet [NJM+12], rely on
a DHT to store the encrypted data. They implement an im-
proved version of ABE that allows immediate revocation of
attributes, and provides a fine grained management of access
control.

Predicate Encryption [KSW08] allows to tune the access
policy for each piece of data using attribute based policies.
Shared secret keys are created for each pair of friends which
they use to decrypt the data on each other’s profiles. Bo-
driagov [BKB14] proposes a system to further hide users ac-
cess policies. Günter et al. [GMS12] base the distribution on
broadcasting encrypted data with pseudonyms. In his system,
an attacker can still figure out which pseudonym that can ac-
tually decrypt the data. Anderson et al. [ADBS09] present an
information distribution system suitable to social networks in
which a hiearchical structure of symetric keys provides selec-
tive access to users’ profile data.

Taohe [WOW08] is a distributed file sharing system. En-
crypted files are made accessible by sharing a pair of keys that
are used for authentication and encryption of the file. This
system requires a lot of overhead in order to share the keys
for each file, which makes it hardly suitable for a large social
network with a fine grain of information sharing.

The GNU name system [Wac15] provides a secure replace-
ment for DNS over the GNUnet network, which allows to pub-
lish links to various types of data inside the network. Infor-

mation is linked to identities represented by asymmetric keys.
GXS also uses asymmetric keypairs, but these are not directly
related to the node that hosts them, offering the possibility to
maintain full anonymity of the actors.

Operations in GXS are generally simpler (and faster) than
attribute based encryption methods and predicate encryption,
because GXS leverages the rather static topology and trusted
connections in the F2F network.

Decentralized secure distribution systems. There is a
large list of decentralized Online Social Networks (OSN).
See [PFS14] and[ZI16] for a detailed survey. Diaspora [dia]
builds a decentralized social network with two levels of stor-
age: master nodes acting as data servers and user nodes acting
as clients.

PeerSon [BSVD09] uses a key sharing/distribution system
to control the access of data into a decentralized social net-
work. The proposed architecture relies on a DHT. It does not
hide metadata nor IPs. It does not provide dynamic group
membership either. SafeBook [CMS09] uses a little less de-
centralized architecture in which concentric structures in the
network layer provide storage and privacy for the participat-
ing network nodes. LotusNet [AR12] has a fully P2P net-
work model and therefore relies on an authenticated DHT
to establish connections and retrieve data, while also offer-
ing reputation management. Pythia [NAHK11] is a decen-
tralized architecture that aims at providing social search. Fi-
nally, a social messaging service has been implemented inside
GNUnet [Tot13] in the goal of providing a social network layer
to the GNUnet system.

Most existing systems rely on a dynamic P2P network (as
opposed to a F2F darknet) and therefore need a DHT to ei-
ther store or at least index the data, and establish connec-
tions to who owns it. Conversely, the friend-to-friend allies
a rather static network topology and probable common inter-
est of friends, which our system leverages for distributing the
data and ensuring availability, while locally distributing the in-
formation among friend nodes.

Data availability in friend-to-friend networks. An empiri-
cal Study of availability in F2F Systems [SDDM11] shows that
the problem of optimizing availability with minimum content
replication is NP-complete. The difficulty of reliably provid-
ing information has been shown to highly depend on correla-
tion of data availability [GTAL12]. Pietinanen [PD12] studies
the impact of temporal communities on the efficiency of op-
portunistic content dissemination in friend-to-friend networks.
In this paper, our assumption that friends share common inter-
ests for for the same types of data somewhat forces this corre-

RR n° 9107

Generic Data Exchange for F2F Networks 5

lation by design.
In [TMB+13] the authors covers the efficiency of cooper-

ative caching in distributed social networks, trying to mini-
mize network-wide content provisioning cost. The Psephos
system [IMC10] provides distributed caching for mobile net-
works. The system is designed to be efficient despite heacy
network heterogeneity. Caching strategy is based on a voting
system that allows to maintain local information about how
much an object is important in the network. In [TVSP17] the
authors present a community based greedy algorithm that tar-
gets mobile networks primarily, exploiting the possibility of
content replication while trying to minimize content replica-
tion and data traffic, at the expense of data availability and
speed of delivery. In contrast to these systems that try to re-
duce storage based on a global optimization strategy, our sys-
tem bases storage on users’ interest.

In practice there only exists a few established friend-to-
friend networks. We believe that the need to find entry points
to a existing network and the need for users to manage their
connections explicitly restrains the adoption of these solu-
tions. OneSwarm [IPKA10] was mainly dedicated to file
transfer and the project is now dead, GNUnet [Wac15] and
Freenet [CSWH01] can both be used as F2F networks if the
appropriate options are set by the user but still run as open net-
works so their F2F usage is likely to not be broadly adopted.
Retroshare [Sol17, JFH] is also a friend-to-friend network
which offers both file sharing and decentralized services such
as forums. Although there is no reliable statistics about the
number of users, this almost 10-years old software has been
downloaded more than 500,000 times. Our distribution sys-
tem has been implemented and runs over the Retroshare net-
work(s).

3 Overview
The GXS distribution system is designed to work on top of
friend-to-friend darknets, which means that computers running
GXS instances (referred to as nodes in this paper) are linked
together by encrypted connexions. These connexions are es-
tablished using TLS, signed by PGP certificates. The network
topology is driven by the list of node certificates each user al-
lows his node to connect to.

The network is allowed to be very inhomogeneous both in
shape and bandwidth: the number of friend nodes to a given
node typically varies from 1 to hundreds, and bandwith is
rather asymmetric since a lot of users typically rely on asy-
metric DSL connexions.

Although nodes can connect/disconnect in an unpredictable
way, we assumed that the data stored at friend nodes is rather

Figure 1: Distribution paradigm for GXS data: green nodes
are subscribed to a given set of GXS data (think of e.g. a fo-
rum). Subscribed nodes advertise the existence of that data to
their own friends (Yellow nodes), who can then decide to sub-
scribe and therefore make the data more widely accessible in
the network. Nodes in red cannot see that data.

consistent over time, so that the distribution of data can be
based on synchronising the difference between what’s stored
at neighbour nodes.

The data distribution paradigm of GXS is that nodes "sub-
scribe" to interesting information. Doing so they advertise the
existence of this information to their own neighbor nodes. This
is illustrated in Figure 1. This model inherently promotes in-
teresting data throughout the network. The design of GXS
addresses the following challenges:

• Integrity, authentication/anonymity and privacy of the
distributed data, depending on the specific needs of the
target application;

• synchronization with minimal bandwidth overhead while
promoting interesting data;

• robustness to changes in the network topology
• robustness to spam;
• extensibility.

In this paper we present the architecture of the GXS system
as well as a few use cases applications (distributed forums,
publication channels, e-mail,...) to illustrate its generic nature.

4 The Generic eXchange System
We successively describe how data is represented, authenti-
cated, stored, distributed, and how applications combine the
various elements to create functionality.

4.1 GXS Objects
The GXS system relies on 5 main data components: identities,
circles, services, groups and messages.

Identities are pairs of asymetric keys (RSA in our imple-
mentation) used to author the distributed data, at the level of a
single user. Identities can be anonymous, in which case they
only provide the guarranty that two pieces of data have the

RR n° 9107

Generic Data Exchange for F2F Networks 6

same author; they can also be signed by a network node key,
in which case they explicitely connect the data to a specific
node of the underlying F2F network.

Circles are set of identities, that can be used to restrict the
distribution of data.

Services represent functionality. A GXS service is a compo-
nent that works as interface between a specific application (e.g.
distributed forums) and GXS internal objects such as groups
or messages. Each service has its own data format and storage
database.

Groups are the top level type of data that a given service
may use. A service may create as many groups as needed,
each having its own authentication and publish policies. In the
example of distributed forums, each forum is a GXS group
which may be restricted to some specific circle of identities.

Group Meta Data
Field Type
Group Id 128 bits fingerprint of the public admin key
Publish time 32-bits integer
Circle Id Group Id of parent circle
Author Id Group Id of author identity
Description text Arbitrary string
Authentication policy 32-bits flags
Distribution control flags 8-bits flags
Admin key 2048-bits RSA public key
Publish key [optional] 2048-bits RSA public key

Messages are hierarchically organised data items that
belong to a given GXS group of a specific service. They
provide both parenting and versioning information in the
form of pointers to other messages. Depending on the service
and group policies, messages may have multiple signatures
attached.

Message Meta Data
Field Type
Message Id 128 bits hash (meta data + private data)
Group Id Id of the parent group
Publish time 32-bits integer
Parent Msg Id Id of parent message
Orig Msg Id Id of previous version of message
Author Id Group Id of author identity

Both groups and messages have their own Meta Data,
which can be updated during their life-time. Group and
message meta data are described in the tables below:

In addition Groups and messages have their own data, that
is entirely defined by the client service.

Applications may use various combinations of these com-
ponents defining their own authentication/signature policies at

the application level or at the group level, in order to define
specific distribution strategies.

4.2 Data authentication
Authentication is provided by GXS using RSA signatures.
Every node in the network participates to the validation of
these signatures so that a malicious node cannot corrupt
the data beyond his direct friends. Three kind of keys are
involved in group/message signatures for different usage, as
summarised in this table:

Group Meta Data + Group Data Message Meta Data + Message Data
Admin signature Required N/A
Publish signature N/A Optional (service-dependent)
Author signature Optional (service-dependent) Optional (service-dependent)

Group signatures GXS groups are distributed with 2 differ-
ent signatures: the admin signature, and optionally the author
signature. The admin signature controls the content of both
the group meta data and the group data. The author signature
ties the group content to a specific identity. If the identity is
also signed by a given node of the network (See Section 5),
the chain of signatures authenticates the GXS group to that
network node.

The group admin key is distributed as part of the group
metadata. Its private key counterpart is kept secret by the node
that acts as a group administrator.

Only the admin signature is mandatory for groups. The au-
thor signature may be left blank, if the service requires the
group data to remain strictly anonymous. If not, the author
signature can e.g. be used to provide a contact author to the
group, which can be modified anytime by the group adminis-
trator.

Message signatures GXS messages optionnally have two
signatures: the message author signature, and the group pub-
lish signature. The message author signature ties the message
to a specific GXS identity (which is not necessarily the one
used in the group author signature).

If required, the message publish signature authenticates that
the message authors has been granted the rights to do so.
While the public publish key is always distributed as part of the
group meta data, the private publish key is manually echanged
between nodes. This allows to e.g. grant a specific list of
neighbor nodes publishing rights to a given GXS group.

Figure 2 summarizes signature validation and data inter-
dependencies between GXS groups and messages. Services
can benefit from the different combinations of group and mes-
sage signatures, in order to reach various levels of authenti-
cation or anonymity. This is was we call the authentication
policy, which we describe later on in Section 4.5.

RR n° 9107

Generic Data Exchange for F2F Networks 7

Figure 2: Signature and validation for data distribution in
GXS. The bottom row represents the respective jobs of group
administrators, message authors and distributors which are any
node in the network having visibility to the GXS group, and
who will collaborate in validating the data.

4.3 Distribution
All GXS data is synchronised using a cascaded algorithm that
is designed to limit the network load as much as possible:
except for messsage IDs, the data that is transfered between
nodes is restricted to the data that the node does not have yet.

In order to achieve this, a peer broadcasts synchronization
requests to its neighbours every minute, for known groups and
known messages (See Figure 3 and 4). Each request respec-
tively contains the last known time stamps for the set of group
meta data (resp. group messages of a given group), in a format
that does not allow the server to know which groups are re-
quested unless the server itself is subscribed to the group. The
rest of the traffic only depends on the need to actually perform
a data transaction, which depends on a seried of tests.

Importantly, the algorithm always compares time stamps
that belong to the same machine. This is achieved by storing
locally the time stamps previously provided by servers into a
“client update map”. In each synchronization request, servers
receive their own timestamp as known by the client which they
previously provided, and compare it to the modification time
of the local database.

In order to improve robustness, transactions are handled in
multi-part format when needed. This is especially required
for message data, which size limit may depend on the spe-
cific application. Message lists are also limited in size, and
may require multiple transactions to be entirely transmitted.
In addition, clients may choose to only request the most re-
cent messages sorted by their publish time stamps, which also
limits the traffic when a new node needs to sync all existing
messages and groups at once. Applications may also choose

a specific maximum age of message synchronization and stor-
age.

Figure 3: GXS Group synchronization logic. Clients broad-
cast the last known time stamp for group meta data to each
connected node, triggering a cascaded synchronisation of in-
formation where only new or updated data is transferred.

As illustrated on Figures 3 and 4, group meta data and mes-
sage data that is received is validated w.r.t. the required signa-
tures, before to be stored into the database.

Figure 4: GXS Message synchronization logic. Similar to
groups, a cascaded synchronisation only exchange new or up-
dated message data.

4.4 Privacy
The distribution of GXS groups and messages is optionally
conditioned by circles of identities, with the following model:
a group restricted to a circle should only be known and ac-
cessible to the members of this circle. To achieve this, group
and message data distribution is partially encrypted (See Fig-
ures 3 and 4):

• Group IDs and message IDs of restricted groups are sent
encrypted using envelop encryption (RSA+AES), for all
members of the circle the group is restricted to.

• Message synchronisation requests for restricted group are
sent hashed according to

IDhashed = SHA1(Group ID|Destination node ID)

RR n° 9107

Generic Data Exchange for F2F Networks 8

Envelop encryption is handled transparently by the GXS
network service which attempts to decrypt received encrypted
items using the private RSA keys of the locally hosted iden-
tities. If successful, the data is passed to the synchronisation
routine.

The key IDs used for envelop encryption are not included in
the encrypted data (only the 256-bits encrypted versions of the
common AES encryption key are), so that the list of members
of the group cannot be obtained from an encrypted group syn-
chronisation packet. Hiding the number of group members is
also possible, by adding an arbitrary number of fake encrypted
AES keys.

Although message synchronisation requests could be sent
encrypted, the cost of envelop encryption/decryption can be
rather high. For this reason we prefer to send hashed group IDs
salted with the target node ID. Doing so the request cannot be
returned to the sending node for recovering the information.
Conversely, if the destination has been granted visibility for
the GXS group it will be easy to bruteforce the group ID for
known groups and keep the result in a cache.

Finally the list of available messages for restricted groups
is sent encrypted, in order to make sure that a previous circle
member who was later denied from that circle cannot read the
new message IDs. Conversely, a new member of the group
restriction circle will have access to all existing message in
that GXS group.

4.5 Services
The service layer of GXS define software components that
automatically benefit from the GXS data distribution system,
provided that they define the data to be distributed and properly
talk to the GXS backend. In practice, creating a new service
to distribute data requires very little effort: The new service
indeed only needs to provide three pieces of information:

1. the definition of its own data to be shared between nodes
and how to serialise it;

2. the authentication policy to be used;
3. a set of interface methods that convert service information

into GXS data, for instance user interactions and notifica-
tions.

Service data. Each service needs to define the data that will
be shared. This is achieved by deriving abstract GxsGroup
and GxsMessage classes which already contain the GXS
meta data needed for distribution (See Section 4.1), and adding
additional data required by the new service. A Forums service
will for instance need to derive its own GXSForumGroup
class to add forum name and description, and its own
GxsForumMessage to store threaded messages. Services

also need to provide a serialiser for each new data type.

Authentication and subscription policies. In order to de-
fine its access and publishing models, a GXS service provides
flags to require if applicable, the group author/publish signa-
ture and the message author/publish signatures.

For more flexibility, message come in two types: root mes-
sages and child messages. The Channels service for instance,
allows a single anonymous person (the channel publisher) to
post data items, each creating a new thread in the channel.
Subscribers to this channel however can post a response to
each post which appears in the service UI as a comment. As
such, channels require no author signature for groups, but only
the mandatory admin signature, require a publish signature and
no author signature for root messages, and author signature
only for child messages.

In addition, each GXS group of a given service may have its
own distribution policy: it can be either public, or restricted to
a given GXS circle of identities.

This complete set of rules offers a great deal of possibilities
to define new services.

Service interface. Services need to collect notifications
from the GXS transport and authentication layer that new GXS
groups and GXS messages are received, and grab the service
private information from them, most of the time in order to
display it in a graphical user interface.

On the other way around, services collect user-created data,
convert it into their own GXS-derived data and call the GXS
group/messages publishing methods.

Practical examples. At the time of writing, multiple GXS
services have been implemented, and cover a large span of
possibilities:

• Internally, the GXS distribution layer depends on two
services: Identities (Section 5) and Circles (Section 6),
which are used to distribute signature keys to authenti-
cate users and sets of users to which distribution of GXS
groups should be limited.

• Forums and channels correspond to a hierarchical dis-
tributed publication system (which graphically look like
usenet forums and streaming channels). They are de-
scribed in Section 7.

Figure 5 summarizes the authentication and data components
of these four services, each of which only represent a few hun-
dreds lines of code, in addition to the common GXS backend.
In section 9, we will discuss additional possible use cases:
website distribution, decentralised git repository, messaging,
and decentralised blogging.

RR n° 9107

Generic Data Exchange for F2F Networks 9

Identities Circles Forums Channels
Distribution On request Automatic Automatic Automatic
Subscription Never Automatic Manual Manual
Group data Name, avatar,... Name, Invitee list Forum info Channel info
Message data [None] Subscribe req. Forum posts Channel post/comment
Group signatures Admin Admin Admin Admin
Root signatures [None] Author Author Publish
Child signatures [None] Author Author Author

Figure 5: Distribution, authentication policies and private data
associated with four different instances of a GXS service,
showing the large flexibility of the system.

4.6 Database

All GXS data is stored in an encrypted database. In our im-
plementation we use the SqlCipher library to store these
databases on the disk. The cost of retrieving and storing infor-
mation can be rather significant and in order to avoid slowing
down the client software, all accesses to the database are made
asynchronous, using a token system. The key to the database
is stored encrypted on the disk, using the PGP key of the node
having access to it.

5 Identities
Pseudo-anonymous identities are used by GXS to distribute
authored data with cryptographic guarranties. They are used
as signing author to group messages, contact autor for specific
GXS groups, and can also be grouped into circles in order to
give limits to the distribution of other GXS groups (See Sec-
tion 6). Identities are distributed in the network so as to follow
the GXS groups that mention them.

Identities come in two brands: (1) Signed identities signed
by the PGP key of the node they belong to. Signed identi-
ties therefore benefit from the web of trust that comes with
PGP signature validation. (2) Pseudo-anonymous identities
are strictly anonymous.

Identities in GXS are represented as individual GXS groups.
The group data for an identity contains the following informa-
tion, all of which are optional:

• the identity avatar, in PNG format.
• the PGP signature of the node in the darknet that holds

that identity

The name of an identity is given by the description text of the
group meta data.

Users can create an arbitrary number of them, which may be
the source of uncontrolled behaviors in the network, thereby
motivating the need for a reputation-based control.

5.1 Distribution
Identities are distributed on demand. Everytime an identity ap-
pears in a GXS message signature validation, or appears as a
group contact author, it is requested to the network node who
passed the group information for the last time, which some-
what guaranties that the node will already have the correspond-
ing identity group.

Identities are automatically deleted when unused. For that,
the identity service keeps a time stamp about the last time
usage of GXS identities accross all services. This is easily
achieved by recording every time an identity is needed to vali-
date some data. If for some reason an identity is deleted while
still needed, the system will however request it again to neigh-
bor network nodes.

Because identities are GXS groups, they benefit from all
the group distribution control. Although not currently used in
our implementation, it is still possible to limit the distribution
of an identity to a specific GXS circle, making that identity
otherwise invisible.

5.2 Reputation based control
Every social network has its trolls, and that certainly includes
darknets where people can reach an unprecedented level of
anonymity. Identities in GXS are therefore also used in con-
junction with a reputation level system to allow users to locally
control the distribution of data.

The role of the distribution control system is to prevent dis-
turbing data to spread without control, while not sensoring new
users. In particular:

• data that is posted by a new author should have sufficient
visibility to bootstrap the voting process

• the user should keep full control over which posts he will
or not forward to his/her friends

• users who do not supply an opinion about an identity
should be able to rely on the overall opinion at neighbor
nodes

• the system should by design prevent badly intentionned
users to create new identities to escape reputation control

To do so, every user in the network is given the opportu-
nity to supply an opinion about each identity he sees, which is
mostly driven by his assessment of how the identity behaves
in the network, for instance when posting offending messages.
An opinion is either positive, negative, or neutral which is the
default. Opinions are shared between neighbor nodes only (see
the discussion at the end of this section). Given its own opin-
ion and the opinion of friend nodes, each node determines a
local reputation level for each identity:

RR n° 9107

Generic Data Exchange for F2F Networks 10

Own opinion Total votes at friend nodes Reputation
Negative Negative
Neutral V− > V+ Remotely negative
Neutral V− = V+ Neutral
Neutral V− < V+ Remotely positive
Positive Positive

The distribution logic is the following: a node always receives
data, but only distributes it if the reputation of the data author
allows it, depending on 3 factors: (1) the reputation of the
author, (2) the anti-spam level of the GXS group considered
and (3) the level of trust the node can have in that identity.
This is illustrated in Figure 6.

Figure 6: Minimum reputation required to forward GXS mes-
sages and groups for 3 different levels of spam control. The
threshold changes based on friendship relationships between
nodes in the darknet: anonymous identities are less trusted
than signed identities by unknown nodes, which are in turn
less trusted than identities signed by known nodes, a known
node being a friend node of parametrizable distance.

GXS Groups are equiped with distribution control flags (in
the group meta data, see Section 4.1), which request more or
less strict reputation control over the users. In the most permis-
sive setting (See Figure 6) all posts are forwarded, except for
the identities that are locally banned by the node. In the most
strict setting, posts signed by identities that are either anony-
mous or signed by a non friend node require a strictly positive
reputation in order to be forwarded to friend nodes.

Distribution control flags are controlled by the administrator
of the group. Each user is of course technically allowed to
not follow these rules, but his behavior will not affect nodes
beyond his direct friends nodes.

Note: We have of course considered the alternate possibility
to represent up/down votes using GXS messages in the cor-
responding identity group, since GXS would by design pro-
vide distribution and authenticity of these votes. However,

in this case, only a careful examination of the graph of sig-
natures would allow to detect forged reputations [ACBM08].
This operation would also be limited to trusted network nodes,
which in the case of a darknet boils down to connected neigh-
bor nodes. We also prefered to have the distribution locally
adapt to reputation rather than globally, since the network con-
nexions are based on friendship—and are likely to stand for a
common interest—and hardly change during a network’s life
time. Our local distribution control system also has two prac-
tical advantages:

• it prevents anyone from purposedly modifying the repu-
tation of an identity beyond his direct friend nodes;

• to hide the opinion of nodes over identities beyond their
direct friend nodes. This avoids troll wars in practice.

6 Circles
Circles represent sets of identities that can be used to restrict
the distribution of other GXS groups in arbitrary GXS ser-
vices. For instance a specific forum may be restricted to the
members of a circle. In such a case only the members of the
circle can see that the restricted group actually exists, and ac-
cess its content, the restriction being based on the encryption
of the data when passed to friend nodes (See Section 4.4).

Circles are distributed among the network and follow the
GXS groups of which they restrict the visibility. In addition
to ensuring the privacy of data that is retricted to some circles,
the design needs to meet two important security requirements:

1. circles membership should depend on an administrator
who can invite people to be in the circle, and revoke its
members;

2. people should be able to request membership without au-
tomatically be true members of the circle. They should
also be able to get out of a circle without permission of
the administrator.

These two conditions effectively prevent someone with bad
intentions to create a circle with non solicitated members, and
allow people to exit a circle whenever they want to.

Circles are implemented as a GXS service, where each cir-
cle is a GXS group. The group data contains the list of identi-
ties that are invited by the administrator. Membership requests
are posted in the circle as signed group messages. For each
identity, only the last message is relevant. It can be a positive
membership request (if the identity wants to request member-
ship) or a negative request if that identity wants to quit the
circle. Each peer in the network performs the following tasks:

1. for each GXS id who posted messages in the circle group,
only keep the latest subscription request, and intepret it as
the GXS id willing to be or not in the circle

RR n° 9107

Generic Data Exchange for F2F Networks 11

2. intersect the list of positive subscription requests with the
invited list, in order to form the list of members in that
circle

Since the invited list is signed by the administrator (the cre-
ator of the circle), no one can hack himself into a circle mem-
ber nor remove other members. Although it is possible to lo-
cally delete membership requests from other identities, it is un-
likely that other nodes in the network will not get these group
messages from a different path.

In addition, the circle administrator is given the possibility
to add members (as a response to a pending subscription re-
quest), and an invited identity may join the circle if invited or
simply request membership if not. The GXS distribution sys-
tem automatically takes care of exchanging these data (group
data and group messages) among peers in the network.

In this system, everyone in the network automatically
checks that someone in a circle has actually requested to be
in that circle or that he is part of the invited list, and therefore
globally participate in the authenticity of the data.

Private and self-restricted circles As circles are GXS
groups, they can be restricted to an other circle. That includes
the possibility to restrict a circle to itself. Members of a cir-
cle restricted to another circle only see that circle if they are
explictly allowed to. In the specific case of a self-restricted
circle, only the invited people in the circles will be able to see
that the circle exist.

Subscription policy Subscription to circle groups are han-
dled automatically so that invited members see the circles they
are invited to, and identities who request subscription forward
these subscriptions back to the administrator.

An example of circle data with pending and accepted mem-
bership is displayed in Figure 7.

Figure 7: Graphic display of the circle administration tool in
the Retroshare software. Bold generally means that the user
owns the data (bold identities are self hosted, bold circles are
administrated locally. The tooltip indicates the distribution and
administrative rights for the second circle "test circle #444".

7 Forums and Channels
Forums and channels are user-based threaded data sharing ap-
plications that both leverage the generic nature of GXS. They
are presented together to illustrate the possibilities offered by
the system in terms of content management and representation.

While forums can be written by all users, channels are read-
only and require the private publish key to post or edit a mes-
sage. Channels however allow users to send comments and
also vote them up and down. They are displayed as a threaded
hierarchy of posts (See Figure 10). The GXS representation of
posts, votes and comments is summarized in the table below:

GXS Primitive Write access
Channel topic Group Group administrator
Channel post/edit Message subclass Group publisher / post author
Channel comment Message subclass All users
Channel vote Message subclass All users
Forum topic Group Group administrator
Forum post/edit Message subclass All users / post author

Channels and forums allow users to edit their posts. This is
made very easy by the GXS system by simply re-posting the
message with the previous message version set as original
message. At the time of display, channels only display the
latest version of each post, while forums allow users to see all
previous versions interactively.

Figure 8: General view of forums. A list of forum topics is
shown on the left, each of which is internally a GXS group.
The threads of posts for the selected forum topic is displayed at
the top right and information about the forum is shown below.
If a post is selected this information is replaced by the content
of the post.

The various types of messages (post, comment, vote) are all
created by deriving the base GXS message class into a specific
message class. Most of the code needed by the application
layer that implements channels and forums is the graphical
user interface. The core part only needs the definition of the

RR n° 9107

Generic Data Exchange for F2F Networks 12

Figure 9: List of posts in a channel. Each post may have com-
ments (shown on Figure 10), an attached image, and references
to files that can be downloaded by the user.

message types, the distribution policy flags (See Section 4.3)
and a few interface functions to convert internal data types into
GUI-compatible data, for a total of less than 300 lines of C++
each.

Although not implemented yet, it is straightforward to set
additional user priviledge to some GXS identities, wich can
therefore be enforced by all participants in the network. Hav-
ing forum moderators for instance simply requires:

• the forum admin to add in forum group data the list of
moderators (this information is automatically signed by
the administrator)

• implement e.g. post deletion as a dedicated group mes-
sage signed by one of the moderators in the list

• every user in the network will be able to enforce the rules:
not display local deleted messages and not forward them
to friend nodes.

• this system obviously provides a possibility to cancel a
moderator’s work if the administrator removes the mod-
erator from the signed list.

7.1 Secure transfer of attached files
Forums and channels may contain references to potentially
large shared files, which should be possible for a distant
node—having access to the channel—to download, without
the need for relay nodes in the channel/forum to actually store
the file. This is made possible by a tunneling system that
guarranties the anonymity of the source and destination, very
similar to the Turtle file transfer protocol [PCT04]. Our own
implementation allows swarming, and doesn’t use global ad-
dressing.

Figure 10: Comments thread in a channel. Comments can be
rated and sorted using a voting system that is also synchro-
nized by GXS.

If the forum/channel is private, the file transfer should how-
ever prevent relay nodes along a tunnel to evesdrop on the
transferred data, or even to know what file the data belongs
to. Transferring files while guarrantying both strict anonymity
and end-to-end encryption robust to man-in-the middle attacks
obviously is a chicken-and-egg problem since it would require
a pre-shared a secret key between the two ends of the tunnel
that want to stay anonymous. Let’s call H() a cryptographic
hashing function. We solve the problem in a way similar to
what file transfer on GnuNet does, without the use of tem-
porary authentication keys [], in order to guarranty the strict
anonymity of the source and destination of the tunnel:

1. Tunnels are requested by broadcasting requests for
H(H(F)). This way only the source of the file—who
knows H(F)—can answer the tunnel request;

2. data in every packet along the tunnel is encrypted (with
Chacha20) using a symmetric pseudo-random key that is
derived by mixing a cryptographically random 96−bits
initialization vector with the 32 bits tunnel ID and the
actual hash of the file H(F);

3. each packet is authenticated using HMAC based on that
random key.

This construction follows the AEAD that is described in the
Chacha20 cipher suite [NL15]. If the hash is published in a
private group, only members of that group will be able to ac-
cess the file using anonymous tunnels. Users who also have
that file will be able to swarm it, without being aware that this
file is shared in a particular GXS group.

8 Asynchronous messaging
Sending/receiving e-mails in a totally decentralized system is
very challenging: a reliable decentralized email system needs
to provide transport, authentication, integrity, and confidential-
ity in an asynchronous way. Peers may not be simultaneously
online while the message is transmitted. The GXS plateform

RR n° 9107

Generic Data Exchange for F2F Networks 13

offers a straightforward way to implement such a messaging
service, based on the underlying transport paradigm, and pro-
vides the following guarranties:

• messages are encrypted and signed
• message recipients are hidden
• transport is guarrantied by an anonymous return receipt

system

Transport

A limited set of GXS groups is created on demand to store
the pending e-mails for all recipients. These Email Transport
Group—referred to as ETG—have no publish control (i.e. no
publish key signature is required). E-mails are transported as
GXS messages in these groups, and are therefore authenticated
by the public key of their authors, quite like forum posts. E-
mail transport groups are automatically created and deleted ac-
cording to the following set of rules:

1. messages are always posted into the group with the oldest
creation time stamp, with less than a maximum number
of messages

2. a new ETG is automaticaly created when no ETG with
free space is available

3. nodes automatically subscribe available ETGs that pro-
vide messages (and therefore automatically advertise
them to their neighbor nodes)

4. messages in ETGs that are older than the maximum mes-
sage transport duration are deleted

5. ETG with no messages are deleted
Rules 1, 2 and 3 ensure that the number of groups that is used
is as limited as possible. It will increate if a lot of messages
need to be transported, and decrease automatically after old
messages are delete. It is quite likely that a node in the darknet
which sends a message without having access to any group
will create a new one, but when he connects to other nodes,
group selection will consistently favor one of the two groups
(Rule 1) and prevent the other one to be spread.

Message protocol

The e-mail transport is all based on publishing appropriate
GXS messages in the e-mail groups:

When Alice wants to send an email to ’Bob’, an identity
picked from the public key pool (See Figure 3), Alice forms a
data packet containing three parts:

1. a random message Id
2. the email itself, encrypted for Bob
3. a return receipt signed by Alice containing the above Id,

and encrypted for Bob
The packet is serialised and posted as a GXS message in of

the ETGs available (openning a new thread in the group). On
receipt, Bob decrypts the email message data, sends it the UI
for display, decrypts the return receipt signed by Alice and
posts it as a GXS message in the same thread.

The GXS transport layer automatically distributes the mes-
sage and return receipt to all connected peers in the network,
each participating as a cache for the messages. Network nodes
will therefore perform the following tasks:

• a decryption attempt is performed on newly received
GXS messages in subscribed ETGs. If successful, the
GXS message is handled as a received email

• messages and receipts older than the email storage period
are deleted

The fact that GXS checks and requires post signatures in
the group messages that are involved in option 2 prevents any
man-in-the-middle attack of the messaging protocol.

For efficiency reasons, messages are only stored in the GXS
emailing group for a short amount of time, in order to limit
the amount of data that the emailing group is handling while
still providing as smooth asynchronous transport as possible.
The emailing client application is responsible to re-post any
un-acknowledged message beyond the TTL of that message is
reached. As a destination, it also takes care of duplicate emails
that can be produced by this double posting.

Because the authentication policy of the GXS messaging
service requires signature of GXS messages, the sender is
known, but the recipient of each message is unknown. This
way, the integrated anti-spam prevents someone from flood-
ing the service with fake messages. Hiding the destination Id
of messages forces all nodes to attempt the decription of mes-
sages using all available private keys, in order to figure out
whether they are the true destination of the message.

Message encryption

Multiple options are available for encryption (Currently only
the first one is implemented in our system):

1. Messages are encrypted with RSA using the public key of
the e-mail destination, using anonymous envelop encryp-
tion.

2. Messages are encrypted using ephemeral keys. In order
to do this, the destination needs to generate and post a
DH ephemeral key ga[mod p] in the messaging group in
advance for future e-mails. The email client will pick this
ephemeral key, generate a random one-time ephemeral
key gb[mod p] and post the encrypted message m as (gb[
mod p],AES(gab[mod p],m))

Option 2 is a littlemore constraining since every peer needs
to publish at least one ephemeral key in advance in order to

RR n° 9107

Generic Data Exchange for F2F Networks 14

be contacted. This scheme however provides forward secrecy
by design, which is important in this case since no control is
given over who accesses the encrypted messages. Note that
this protocol cannot prevent two users from incidently using
the same server’s ephemeral key twice, because of which p
should be chosen to be a safe prime [MU10]. Both methods
allow a message to be encrypted for multiple users at once,
using encapsulated public key encryption, while not requesting
to disclose the identity of the recipient.

9 Discussion of possible use cases
In this section we discuss the possibility to implement addi-
tional services, which mostly require an effort in graphical
user-interface deployment and the representation of internal
application items using GXS primitives. The GXS engine
will automatically handle the data distribution, consistency,
authentication and privacy aspects. We strongly encourage—
and offer our help—to readers who want to implement these
applications.

Distributed blogging and micro-blogging would be a fully
decentralized clone of twitter (or any blog system). It can be
implemented in a way very similar to channels, where only the
publisher can post messages. Users can post comments, vote
over posts, etc. Message data may include images and links in
their private part.

Directory synchronisation allows to synchronize folders
accross computers. The private group data is used to store the
folder content. Synchronisation is locally handled by the ser-
vice part, checking which files are already here or not, possi-
bly comparing their hash. The synchronization can happen on
multiple computers, all having the same reference directory to
synchronize, but globally swarming to sync the files. The ac-
cess to the directory content can be made private by restricting
the sync group to a circle.

Distributed calendar and tasks. Each calendar is a GXS
group where write access is limited to the list of publishers,
and read access to the content of the calendar can be limited by
restricting it to a circle. Tasks and events are messages, each
containing dates and status as private message data. Sub-tasks
and comments to events can be represented as GXS messages
with a different write access hence allowing users to collabo-
rate on tasks and comment on events.

Distributed source versioning would allow to fully decen-
tralize and secure the use of git [SHS+15]. In this model, a
GXS group represents a versionned project, similarly to what
a git repository clone would do. Users who subscribe to the

group have the possibility to clone the source for that project,
which they do using the private tunnelled file transfer de-
scribed in Section 7.1. They can also request to merge their
own clone of the repository with the master repository through
a merge request mechanism. Merge requests are represented
as GXS messages, and are handled by the master node who
has the administrator rights over the group, so as to centralize
conflict resolution, and ensure a consistent state of all clones.
Messages are also used to send confirmation of merge, and no-
tify of conflicts if any. Normally most conflicts should be vis-
ible locally to each node that clones the repository, but it may
happen that multiple incompatible merge requests are sent si-
multaneously by different nodes.

We believe that this implementation of the git protocol over
GXS allows a fully decentralized source management system.
If the master repository is hosted on a Tor-node (See Sec-
tion 12), then the source project is automatically out of reach
to a global observer, and still benefits from the strong levels of
authentication and privacy provided by the GXS system.

Fully decentralized social network Multiple partly decen-
tralized social networks exist already [PFS14, ZI16]. Building
a fully decentralized social network on top of GXS is a simple
task, although a lot of GUI work would be needed to display
the information in a user-friendly way. Internally, this goal can
be achieved as follows:

The home page of each user is a GXS group acting as ’mas-
ter group’. GXS distributes user’s posts as sub-groups of the
master group. Similarly to messages, GXS groups can indeed
be linked hierarchically using the ID of their parent group.
GXS messages are used to represent comments, user replies
to posts and votes. Because posts are themselves groups, cir-
cles can be used to provide visibility control of each separate
thread of posts which automatically applies to all answers and
comments to the same thread.

Such a system would benefit from other built-in GXS ser-
vices: The subscription system allows to automatically pro-
mote popular pages; users would be allowed to exchange mes-
sages using the existing mail system (See Section 8); users
would have the possibility to privately share files that can be
downloaded privately using the tunneled file transfer described
in Section 7.1.

Here again, coupling such an service to an application that
runs GXS over Tor nodes would create an extremely robust
and private fully decentralized social network.

The table below summarize which GXS primitives should
be used to build these applications:

RR n° 9107

Generic Data Exchange for F2F Networks 15

GXS groups GXS messages W/access
Blogging Blog Blog posts, comments Publisher
Directory sync Directory content [Unused] [Unused]
Calendar Calendar Tasks, Events Publisher
Source versioning Git repository Merge requests Everyone
Social network User page, Post threads User posts Publisher

comments/votes Everyone

10 Security
Threat model The GXS data exchange system guarranties
confidentiality in a friend-to-friend mesh network where links
between friend nodes are authenticated and encrypted. In this
context, privacy with respect to outside attackers mostly re-
lies on the security of TLS links between nodes, which we
will not discuss here. We assume that TLS links are authenti-
cated with PGP keys that users exchange in order to connect,
which prevents any man-in-the-middle attackers from outside
the network to evesdrop on the transferred data by relaying the
unencrypted traffic.

Friend-to-friend networks (or Darknets) are generally vul-
nerable to network mapping techniques, possibly involving
measurements of the amount of—encrypted—data that trans-
fers between nodes. Using a secure DHT in the host mesh
application largely mitigates this problem [CDG+02]. In our
implementation (The Retroshare software), a set of techniques
have been implemented and successfully prevent traffic for-
warding due to sybil attacks in the DHT.

In this paper we focus our security analysis on the threats
caused by an attacker from inside the network. In this sce-
nario, the attacker can read and modify the GXS code, or the
code of the hosting friend-to-friend application, in every way
possible. He can own his own network node(s) and participate
in the network. Our analysis of security is focused on attacks
against privacy, anonymity and stability of the data distribution
system.

10.1 Anonymity and authentication
A loss of anonymity happens when an attacker manages to
connect a supposedly anonymous piece of data with the IP
address of the person who posted it. The possible paths to
recover the IP of an author of a GXS message or a GXS group
are depicted in the graph below:

In this graph, most nodes correspond to optional features
that depend on the particular settings of each service. A forum
for instance (See Section 7) may not require GXS identities to

be signed nor provide a group author. A channel will only con-
tain messages that are unsigned therefore not linking the post
to anyone. Finally, note that the last link requires the attacker
to have the host node as a direct friend, which in practice dras-
tically reduces the scope of an attacker.

An attacker inside the network can of course try to perform
timing statistics in order to figure out whether an anonymous
GXS identity is hosted by a friend node or not. We have not
implemented counter measures against this (such as imposing
a time bias in the distribution of messages), since the static
nature of friend-to-friend networks makes it impossible for an
attacker to crawl the network in the hope of connecting to ran-
dom nodes. In practice, it is safe to assume that complete
anonymity is only guarantied beyond direct friend nodes.

The network layer should also make sure that it is not possi-
ble to find the IP of a node from a node signature. In our imple-
mentation, we ensure that property by basing DHT requests on
the hash of SSL certificates that are signed by the node’s PGP
key, but only distributed to friend nodes. It is therefore not
possible to request for a particular node’s IP only knowing its
PGP key signature.

Conversely, services that require messages to be signed by
node-signed GXS identities provide a strong authentication of
their data.

10.2 Privacy
The table below summarizes which piece of information is
available to whom across a network that runs GXS:

Information is visible to...
Hosting a signed identity Hosts were identity is active
Hosting an anonymous identity Friend nodes (with timing stats)
Membership to public circles Friend of circle subscribers
Membership to private circles Hosts of circle invitees
Subscription to public groups Friend nodes of subscribers
Subscription to restriced groups Hosts of circle members
Data of circle-restricted groups Hosts of circle members

The table makes the difference between circle subscribers
(nodes who subscribed the circle as a GXS group, for instance
because they requested membership and want the information
to get back to the circle administrator), circle invitees (which
are explicitly invited by the circle administrator), and true cir-
cle members who are both invited and grant membership.

User impersonation. Impersonizing a GXS message author
requires to forge a RSA signature knowing the public key of
the author’s GXS identity. This is known to be a computation-
naly hard problem. It is of course possible for an attacker to
create a GXS identity (using a different RSA key-pair) with
the same name and avatar than an existing identity, and use

RR n° 9107

Generic Data Exchange for F2F Networks 16

this copy to post messages. The two identities will however
have different IDs and will be handled as two different objects
by the system.

Passive evesdropping over transfered files. The end-to-
end encryption of files that we described in Section 7.1 al-
lows users in the darknet to exchange these files anonymously,
while keeping a full confidentiality over their content and
meta-data, as soon as the file hash is kept secret. Consequently,
file pointers that are shared in circle-restricted GXS groups are
only accessible to the members of the circle.

Exposing members of a private circle. Private circles are
a specific type of GXS group that is circle-restricted to itself
(See Section 6). Its members are consequently only known to
the list of invited identities. Both the existance of the circle and
its content are kept private, since both are sent to friends en-
crypted using envelop encryption using the list of invited mem-
bers of the circle. Exposing the members of a self-restricted
circle needs to break the RSA/AES encryption that is used to
exchange its data with other members of the circle.

Nodes that nodes that are friend to someone who hosts a
self-restricted circle will therefore only see that some unknown
GXS group exists at the next node, without being able to re-
quest the group data nor its messages.

Involving users in unsolicitated activity. This is a serious
threat in a network where only friend nodes can really be
trusted. Among possible attacks, one can imagine someone
creating a circle of victim GXS identities with offending con-
tent and pretend that the victims teamed up voluntarily. One
can also imagine securing an offending forum/channel to such
a made-up circle, so that only the victims would see the of-
fending forum/channel content.

The architecture of GXS prevents these by design since ef-
fective circle membership depends on two factors: to be a cir-
cle member, an identity needs to be included in the invited
list managed by the circle administrator, but is also needs to
have explicitly requested membership to this circle. An iden-
tity that does not meet these two conditions will not receive
(nor be able to decrypt anyway) the meta data and content of
groups limited to the circle.

An exception to this rules exist for private circles however,
as described in Section 6, but the existance of the circle is only
revealed to the invited identities, which severely limits the the
threat of unwillingly involving users into a circle.

10.3 Data flow attacks
In this section we review the possible attacks to limit or flood
the diffusion of data through the GXS system. The current im-

plementation of GXS has been tested "in the wild" and there-
fore confronted to nasty users, who unintentionaly contributed
to make the system robust against data flow attacks.

Intentional corruption/blockade of posts. An attacker in-
side the network can modify his own node in order to cor-
rupt the data in existing GXS groups or messages. Since every
group data (or group messages) that is received is validated
w.r.t. the group admin key (and the group publish key if appli-
cable, see Section 4.2), corrupted data is immediatly discarded
on receipt at the next friend node. The corrupted information
will therefore not spread at all.

Similarly, an attacker cannot impersonnate an existing
group by generating a new group admin key, since the ID of
the group (which is the identifier of that group in the network)
is a hash of the public admin key. Doing so, an attacker would
effectively create a new GXS group.

Blocking information is of course possible by locally dis-
abling all GXS traffic. If a node acting as a bridge over two
otherwise separated networks blocks GXS data, it will effec-
tively prevent posts from one side of the network to reach the
other side. This needs however a very restricted network topol-
ogy and a single new connection between two nodes on each
side will instantly allow the data to consistently reach every
subscribed node.

Network flooding. Network flooding is a serious threat. One
can imagine a GXS user who creates tons of GXS groups (for
instance forums) or tons of GXS messages (for instance forum
messages in a single GXS groups) possibly modifying his own
node in order to automate the task. GXS is quite safe against
such actions for two reasons:

Only subscribed GXS groups are made visible to friend
nodes. As a consequence, locally creating millions of GXS
groups at a given node will only cause trouble to the direct
friends of this node, where a huge list of unsubscribed groups
will be visible. It is of course possible to limit the amount of
GXS groups a node can receive from his friend nodes, but we
never had to come to such a limitation. Because it is fairly
easy to display the amount of GXS groups advertised by each
friend node, an attacker (or someone relaying his traffic) would
immediately be spoted by all friend nodes and most likely dis-
connected from the network.

Groups that require message signature are very safe against
message flooding if they enable the reputation system we de-
scribe in Section 5.2. Doing so, using the same identity to
generate offending messages will rapidely result in the iden-
tity being flagged as bad, and its messages will be discarded.
Creating new identities in order to post new messages will not

RR n° 9107

Generic Data Exchange for F2F Networks 17

allow the messages to be forwarded beyond friend nodes since
the reputation system requires a strictly positive reputation in
order to transmit the posts.

Because unsigned messages are strictly anonymous, GXS
groups that would not require message signature would of
course not benefit from the reputation system, and would be
prone to spamming and flooding.

11 Performance
We examine in this section the bandwidth usage of the soft-
ware, and discuss its robustness with respect to traditional net-
work problems such as loss of data, clock differences between
nodes and network failures.

11.1 Bandwidth
Figure 11 shows the exchange of data items that transfer up
and down between two nodes when one of them performs a full
synchronization of visible GXS groups. In the figure the node
providing the data is subscribed to 23 GXS groups (which in
this case happen to be forums) having hundreds of messages
each. The color dots in the figure correspond to packets of
items of similar types. What happens here is:

1. the client node broadcasts Group Sync Requests every 60
secs (item #01, at left);

2. the server answers with a list of group IDs with time
stamp (item #02, at right);

3. the client asks for the metadata of unknown groups (item
#02, at left);

4. the server sends the group data for the 23 missing groups
(item #04, at right)

In the right side of figure 11, one can also see the server’s
"client" side of the synchronization algorithm, also sending
group sync requests. These do not belong to the client syn-
chronization data flow. The transaction items that are listed
on both sides encapsulate items are used to split items of type
#02 and #04 into smaller chunks. Some of the groups (3 in
this case) are limited to a circle, so their meta data is sent en-
crypted, which explains the 3 encrypted data packets which
encapsulate 3 of the 23 group sync items.

Figure 12 shows the data items that transfer once the client
node subscribes to one of the groups containing 405 messages
21 of which fall into the user-defined synchronization period:

1. the client broadcasts message synchronization requests
every 60 secs (item #10, at left);

2. the server responds with message sync containing the
meta data for messages that fall into the synchronization
period limits (item #08, at right);

3. the client requests for the messages (item #08, at left);

4. the server sends the message data (item #20, at right).
Similarly to group synchronization, the graph also shows

part of the server’s client synchronization items, and group
syncronization exchanged for the the two sides.

Figure 13 shows the bandwidth profiles (up and down) over
a 5 minutes window for a network node that is connected to 10
other nodes, and subscribed to 23 GXS groups (which are GXS
forums in this measurements). The upward bandwidth profile
clearly shows the regular 60 seconds spaced message synchro-
nization request broadcast (item #01). The overall bandwidth
consumption is minimal (a few bytes per second).

Encrypted data (items #05) correspond to message syn-
chronisation requests for circle-restricted GXS groups (See
Section 6). Individual encrypting small items using envelop
encryption represents a non negligible bandwidth overhead,
which make these items more visible in the graph.

The "Group stats" (item #03) not strictly necessary to the
functioning of GXS, but are used to supply neighbor nodes
with statistics about how many messages can be found in visi-
ble public groups, without the need to actually download them,
which helps promoting active groups.

11.2 Robustness
Data redundancy. Data redundancy in GXS is extremely
high: all nodes subscribed to a group host the posts for the
locally chosen storage/sync periods. As a consequence, if a
user loses his data, he will rapidly get it back. Besides, syn-
chronization for a group can be provided by any connected
node that is subscribed to this group. Therefore in a popular
group, data always finds its way to all synchronized nodes in a
short amount of time even if a large subset of the subscribers
are offline.

Sharing publish keys and group administrator keys between
friend nodes is an efficient way to backup the GXS groups.
This should be implemented in the host application (Our im-
plementation currently only allows to share publish keys).
This mechanism can be adapted to some particular use cases,
for instance by encrypting the publish keys sent to friends, and
requiring a passphrase to recover them.

Time synchronisation. Time shifts between friend comput-
ers are never a problem because synchronization time stamps
between different clocks are never compared to each other
during synchronization as explained in Section 4.3: for every
friend node, GXS always compares the time stamp given by
the friend node with its own clock, to the previously recorded
time stamp. When enforcing the synchronization period how-
ever, the publishing time of messages is compared to the local
time on the synchronized node. The synchronization window

RR n° 9107

Generic Data Exchange for F2F Networks 18

Figure 11: Synchronization of visible GXS groups. The dots corresponds to GXS data packets of various types up (left) and
down (right) when a network node connected to a single node synchronizes the GXS groups that are reachable through this
node. One can see the broadcasted group synchronization requests, followed by group data, all encapsulated into transactions
items, which allow to chunk the transferred data.

Figure 12: Synchronization of the messages for a single newly subscribed forum. The dots show the exchange of individual
data packets that take place when synchronising a newly subscribed GXS group. See the text in for details.

(6 months by default) is therefore up to the time shift between
computers, which appears to be negligible.

Time changes on a single computer do not cause any harm
either, since the decision to re-synchronize groups is based on
time stamps being different rather than larger. As a conse-
quence, daylight saving time change do not have any impact
on GXS synchronization.

Network failures. All GXS transactions are acknowledged
and therefore can be restarted when uncomplete or cancelled,
which happens when they take more than some hard-coded
time limit. When a node disconnects during a GXS transac-
tion, the transaction will be cancelled on the connected nodes
and re-started at the next time of connection. In order to
avoid endless loops due to very large transactions (for instance
caused by someone subscribig to a group with an arbitrary
large number of messages) transactions are limited in size and
in the number of messages. At every synchronization the list
of messages to request is computed on-the-fly so as to only
request what is still missing. As a consequence, a node that
disconnects very often will eventually manage to synchronize
a large groups, receiving group messages by packets.

Service heterogeneity. Network nodes must be robust to un-
known information coming from GXS services that are not lo-
cally supported. In our implementation this is achieved by la-
belling data packets according to their "service ID", and by
dropping the packets that correspond to unknown services.

Limitations We identified the following limitations to the
GXS system: The static decentralized nature of the network
makes it prone to the creation of disconnected islands for the
same group, in which case the separated parts will not syn-
chronise until a new path is found between them. When that
happens however, full synchronization is reached within min-
utes. The same happens when a new user joins a group with
many messages.

In order to distribute messages of a given circle-restricted
group, GXS implicitely supposes that at least some of the
neighbor nodes host identities that belong to that circle. By
construction this is always true since only subscribed groups
are advertised to friend nodes, but the network topology may
change with time. The information of which identity in a cir-
cles is hosted at a specific neighbor node is not required.

Anonymous identities hosted at a node lose a certain degree

RR n° 9107

Generic Data Exchange for F2F Networks 19

Figure 13: Linear scale bandwidth profiles accross time (up
and down) over a sliding 5 mins window, for a network node
connected to 10 other nodes, subscribed to 23 GXS groups,
after synchronization. The numbers in parenthesis show the
average bandwdith over the full measurement time period. The
overall bandwidth consumption is minimal.

of anonymity w.r.t. direct neighbor nodes. It is indeed easy to
compare message signature times with the time at which the
data is received to figure out that the signed of the message
is hosted at a neighbor node. In a F2F network, this kind of
threat is not a practical concern, so we did not implement mit-
igation measures such as randomly removing some minutes to
the time in the signature of messages.

Message synchronization is not instantaneous, and therefore
can hardly be used to distribute chat messages. At the moment
the polling of messages happens every 2 minutes. It can be
made faster, but is already fast enough for all implemented
services (e.g. forums, channels, etc).

12 Implementation
We have deployed GXS into the Retroshare application 1, in
less than 20, 000 lines of C++ code. Retroshare is an open-

1See http://retroshare.net

source friend-to-friend application that builds a darknet where
friend nodes only communicate using trusted connections en-
crypted with TLS. The software is currently used by thousands
of users daily 2. The TLS links between friends can be estab-
lished over TCP/UDP connections but also over Tor [DMS08]
or I2P [ZH11]. Having a running implementation of GXS we
had the possibility to measure its efficiency and limitations in
a working context. We also faced a number of unexpected
challenges which we describe now.

Network load. Our implementation of GXS does not rely
on users to be online all the time. In practice, in a Friend-to-
Friend network users keep disconnecting, or can disappear for
a while. In these situations, as well as when a newcomer joins
a part of the network that holds a lot of data, care must be taken
to sync the GXS databases without overflooding the links be-
tween nodes. This happens for instance when a user subscribes
a GXS group that holds many messages. To that matter, syn-
chronization events are represented by network transactions
that can be chopped into smaller pieces if required. Trans-
actions can be cancelled when they take too long (typically
when a friend node disconnects), and are restarted when the
network link is up again. Our implementation also keeps lists
of rejected messages (mainly due to the anti-spam system) so
that these messages will not be requested again. Synchronisa-
tion of large GXS groups usually takes up to a few minutes to
complete.

Database access and storage is also challenging. First of
all, all GXS data that is stored on the disc—which includes
private keys for GXS groups—is encrypted on the fly using
AES. This is performed using a version of the sqlite library
that supports on-the-fly encryption 3. The sqlcipher encryp-
tion key is randomly chosen by each network node and stored
encrypted by the TLS public key of that node. At the time of
starting a node, the TLS key is decrypted using the node PGP
key and used to also decrypt the sqlcipher key.

Second, because database access is not instantaneous being
for decryption or even disk usage access load, all access to
the GXS database are made asynchronous using a token sys-
tem: retrieving the list of GXS groups for instance requires
to post a request, store the token, wait for the response call-
back to be called and then use the token to actually access the
data. While this asynchronous access system makes develop-
ment a bit more complicated, it allows the user interface to re-

2This estimation is obtained thanks to the DHT which helps users to syn-
chronise UDP connections through NATs. People who do not use the DHT
are therefore not counted.

3See https://github.com/sqlcipher

RR n° 9107

Generic Data Exchange for F2F Networks 20

Figure 14: Overview of how the GXS components insert into
a darknet application. The graphical user interface of the host
application talks to the GXS service level to gather/send infor-
mation related to specific services (e.g. forums, channels, etc)
while the GXS core takes care of synchronising the data using
connexions provided by the darknet layer.

main perfectly responsive all the time. An intermediate cache
system keeps the result of the latest requests so that the user
interface can retrieve them instantly.

Locally, unused data is gradually erased: we keep track of
the usage of GXS identities and delete the ones that are not
used after some time. GXS groups are also cleaned up of all
messages that are older than a user-defined period.

Cryptographic primitives. Our implementation uses our
own fork of OpenPGP-SDK4 for PGP network node keys.
PGP-authed TLS is implemented on top of openssl 5. Con-
nections between nodes are encrypted using perfect forward
secrecy (Cipher string DHE-RSA-AES256-GCM-SHA384).
All GXS group keys are 2048 bits RSA key pairs, for which
we use libcrypto.

Plugins. In our implementation GXS allows developers to
add new services. To do so, a developer needs to instance
the GXS network sync and group validation components, and
supply them with its own service-related data. When a new
service is created, its data will spread the network of nodes
who actually run the same plugins. Other nodes will simply
discard the data.

4Originally available at https://github.com/public/OpenPGP-SDK
5See https://www.openssl.org/

13 Conclusion
In this paper we presented the GXS system, which allows to
privately and securely distribute generic data inside Friend-to-
Friend networks. It offers a unique combination of flexibility,
security, robustness and extensibility.

In the near future, we will work on extending GXS group
visibility, so as to favor the distribution of interesting groups
to users for which no friend has subscribed the group. To do
this, a turtle search [PCT04] will be used to gather information
about groups that might not be visible at friend nodes. Simi-
larly, tunnels can be used to provide virtual peers with which
group synchronization can be achieved. This poses additional
challenges in particular w.r.t. whether tunnels are needed for a
given service, since friend might This can be partially achieved
by including an information about the group that allows to con-
servatively accept tunnel requests if they have anything new to
send. The exact synchronisation will then take place through
the tunnel once it is open. Finding a proper marker however
is not trivial (e.g. the time of the most recent message is not
enough), since peers do not always keep messages for the same
amount of time and therefore may not store the same subset of
messages.

We believe that the distribution of data using GXS can be
used to create a local routing table, that keeps track of which
friend node relayed a piece of data signed by a particular iden-
tity. That information can then be used to reach this identity by
relaying the data upward the flow. It is still unclear however
how the data should be handled when the ideal route is broken
because a friend node is disconnected.

Finally, our long term goal is to implement a complete social
network with an user interface similar to Facebook, on top of
GXS, using it as a transport layer.

14 Acknowledgments
I would like to express my gratitude to two former members of
the Retroshare community: Mark Fernie and Chris Evi-Parker,
who both contributed to GXS in its early design and imple-
mentation. A lot of help in testing, debugging and profiling
was also offered by the users community on an every day ba-
sis.

A Code release
A full ready to use implementation of GXS is available in the
Retroshare codebase:
http://github.com/retroshare/retroshare. It
runs the internal forums, channels, messaging and links

RR n° 9107

Generic Data Exchange for F2F Networks 21

services. In this repository, the GXS backend is in
libretroshare/src/gxs/.

References
[ACBM08] Elli Androulaki, Seung Geol Choi, Steven M. Bellovin,

and Tal Malkin. Reputation Systems for Anonymous
Networks. In Proceedings of the 8th International
Symposium on Privacy Enhancing Technologies, PETS
’08, pages 202–218, Berlin, Heidelberg, 2008. Springer-
Verlag.

[ADBS09] Jonathan Anderson, Claudia Diaz, Joseph Bonneau, and
Frank Stajano. Privacy-enabling Social Networking over
Untrusted Networks. In Proceedings of the 2Nd ACM
Workshop on Online Social Networks, WOSN ’09, pages
1–6, New York, NY, USA, 2009. ACM.

[AR12] Luca Maria Aiello and Giancarlo Ruffo. LotusNet: Tun-
able privacy for distributed online social network ser-
vices. Computer Communications, 35(1):75–88, January
2012.

[BBS+09] Randy Baden, Adam Bender, Neil Spring, Bobby Bhat-
tacharjee, and Daniel Starin. Persona: An Online Social
Network with User-defined Privacy. In Proceedings of
the ACM SIGCOMM 2009 Conference on Data Commu-
nication, SIGCOMM ’09, pages 135–146, New York,
NY, USA, 2009. ACM.

[BKB14] Oleksandr Bodriagov, Gunnar Kreitz, and Sonja
Buchegger. Access Control in Decentralized Online So-
cial Networks : Applying a Policy-Hiding Cryptographic
Scheme and Evaluating Its Performance. pages 622–
628, 2014.

[BSVD09] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and
Anwitaman Datta. PeerSoN: P2p Social Networking:
Early Experiences and Insights. In Proceedings of the
Second ACM EuroSys Workshop on Social Network Sys-
tems, SNS ’09, pages 46–52, New York, NY, USA, 2009.
ACM.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters.
Ciphertext-Policy Attribute-Based Encryption. In Pro-
ceedings of the 2007 IEEE Symposium on Security and
Privacy, SP ’07, pages 321–334, Washington, DC, USA,
2007. IEEE Computer Society.

[CDG+02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh,
Antony Rowstron, and Dan S. Wallach. Secure Routing
for Structured Peer-to-peer Overlay Networks. SIGOPS
Oper. Syst. Rev., 36(SI):299–314, December 2002.

[CMS09] L. A. Cutillo, R. Molva, and T. Strufe. Safebook:
A privacy-preserving online social network leveraging
on real-life trust. IEEE Communications Magazine,
47(12):94–101, December 2009.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In In-
ternational Workshop on Designing Privacy Enhancing
Technologies: Design Issues in Anonymity and Unob-
servability, pages 46–66, New York, NY, USA, 2001.
Springer-Verlag New York, Inc.

[dia] The diaspora* Project
https://diasporafoundation.org/.

[DMS08] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceedings
of the 13th USENIX Security Symposium, 2008.

[GMS12] Felix Günther, Mark Manulis, and Thorsten Strufe.
Cryptographic Treatment of Private User Profiles. In
Proceedings of the 2011 International Conference on Fi-
nancial Cryptography and Data Security, FC’11, pages
40–54, Berlin, Heidelberg, 2012. Springer-Verlag.

[GTAL12] R. Gracia-Tinedo, M. S. Artigas, and P. García López.
Analysis of data availability in F2f storage systems:
When correlations matter. In 2012 IEEE 12th Inter-
national Conference on Peer-to-Peer Computing (P2P),
pages 225–236, September 2012.

[IMC10] Stratis Ioannidis, Laurent Massoulie, and Augustin
Chaintreau. Distributed Caching over Heterogeneous
Mobile Networks. In Proceedings of the ACM SIG-
METRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’10,
pages 311–322, New York, NY, USA, 2010. ACM.

[IPKA10] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy,
and Thomas Anderson. Privacy-preserving P2p Data
Sharing with OneSwarm. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages
111–122, New York, NY, USA, 2010. ACM.

[JFH] Bufford John F. and Yu Heather. Handbook of Peer-to-
Peer Networking | Xuemin Sherman Shen | Springer.

[JNM+12] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Ka-
padia. DECENT: A decentralized architecture for en-
forcing privacy in online social networks. In 2012
IEEE International Conference on Pervasive Comput-
ing and Communications Workshops, pages 326–332,
March 2012.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate
Encryption Supporting Disjunctions, Polynomial Equa-
tions, and Inner Products. In Proceedings of the Theory
and Applications of Cryptographic Techniques 27th An-
nual International Conference on Advances in Cryptol-
ogy, EUROCRYPT’08, pages 146–162, Berlin, Heidel-
berg, 2008. Springer-Verlag.

RR n° 9107

Generic Data Exchange for F2F Networks 22

[MU10] Alfred Menezes and Berkant Ustaoglu. On reusing
ephemeral keys in diffie-hellman key agreement proto-
cols. Int. J. Appl. Cryptol., 2(2):154–158, January 2010.

[NAHK11] Shirin Nilizadeh, Naveed Alam, Nathaniel Husted, and
Apu Kapadia. Pythia: A Privacy Aware, Peer-to-peer
Network for Social Search. In Proceedings of the 10th
Annual ACM Workshop on Privacy in the Electronic So-
ciety, WPES ’11, pages 43–48, New York, NY, USA,
2011. ACM.

[NJM+12] Shirin Nilizadeh, Sonia Jahid, Prateek Mittal, Nikita
Borisov, and Apu Kapadia. Cachet: A Decentralized
Architecture for Privacy Preserving Social Networking
with Caching. In Proceedings of the 8th International
Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’12, pages 337–348, New York,
NY, USA, 2012. ACM.

[NL15] Y. Nir and A. Langley. ChaCha20 and Poly1305 for
IETF Protocols. RFC 7539 (Informational), May 2015.

[PCT04] B.C. Popescu, B. Crispo, and A.S. Tanenbaum. Safe
and private data sharing with turtle: Friends team-up and
beat the system. Lectures notes in computer science. Se-
curity Protocols, 3957, 2004.

[PD12] Anna-Kaisa Pietilänen and Christophe Diot. Dissemina-
tion in Opportunistic Social Networks: The Role of Tem-
poral Communities. In Proceedings of the Thirteenth
ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, MobiHoc ’12, pages 165–174,
New York, NY, USA, 2012. ACM.

[PFS14] Thomas Paul, Antonino Famulari, and Thorsten Strufe.
A Survey on Decentralized Online Social Networks.
Comput. Netw., 75(PA):437–452, December 2014.

[SDDM11] R. Sharma, A. Datta, M. DeH’Amico, and P. Michiardi.
An empirical study of availability in friend-to-friend
storage systems. In 2011 IEEE International Confer-
ence on Peer-to-Peer Computing, pages 348–351, Au-
gust 2011.

[SHS+15] Russell G. Shirey, Kenneth M. Hopkinson, Kyle E. Stew-
art, Douglas D. Hodson, and Brett J. Borghetti. Anal-
ysis of Implementations to Secure Git for Use As an
Encrypted Distributed Version Control System. In Pro-
ceedings of the 2015 48th Hawaii International Confer-
ence on System Sciences, HICSS ’15, pages 5310–5319,
Washington, DC, USA, 2015. IEEE Computer Society.

[Sol17] Cyril Soler. The retroshare Project
https://retroshare.net/, 2017.

[TMB+13] M. Taghizadeh, K. Micinski, S. Biswas, C. Ofria, and
E. Torng. Distributed Cooperative Caching in Social
Wireless Networks. IEEE Transactions on Mobile Com-
puting, 12(6):1037–1053, June 2013.

[Tot13] Gabor Toth. Design of a Social Messaging System Us-
ing Stateful Multicast. PhD thesis, University of Ams-
terdam, Amsterdam, 2013.

[TVSP17] K. Thilakarathna, A. C. Viana, A. Seneviratne, and
H. Petander. Design and Analysis of an Efficient Friend-
to-Friend Content Dissemination System. IEEE Trans-
actions on Mobile Computing, 16(3):702–715, March
2017.

[Wac15] Matthias Wachs. A Secure and Resilient Communica-
tion Infrastructure for Decentralized Networking Appli-
cations. PhD thesis, Technische Universität München,
München, 2015.

[WOW08] Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: The
Least-authority Filesystem. In Proceedings of the 4th
ACM International Workshop on Storage Security and
Survivability, StorageSS ’08, pages 21–26, New York,
NY, USA, 2008. ACM.

[ZH11] Bassam Zantout and Ramzi Haraty. I2p data communi-
cation system. In Proceedings of ICN 2011, The Tenth
International Conference on Networks, January 2011.

[ZI16] Xiang Zuo and Adriana Iamnitchi. A Survey of So-
cially Aware Peer-to-Peer Systems. ACM Comput. Surv.,
49(1):9:1–9:28, May 2016.

RR n° 9107

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Overview
	The Generic eXchange System
	GXS Objects
	Data authentication
	Distribution
	Privacy
	Services
	Database

	Identities
	Distribution
	Reputation based control

	Circles
	Forums and Channels
	Secure transfer of attached files

	Asynchronous messaging
	Discussion of possible use cases
	Security
	Anonymity and authentication
	Privacy
	Data flow attacks

	Performance
	Bandwidth
	Robustness

	Implementation
	Conclusion
	Acknowledgments
	Code release

